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Numerous reports have appeared describing oxidation-reduction 
across bilayer membranes.1,2 Mechanisms proposed for specific 
systems include the following:1 (i) electron tunneling across the 
hydrocarbon barrier between interfacially bound redox partners,3-6 

(ii) molecular diffusion of bound redox components across the 
barrier,7"9 and (iii) formation of barrier-penetrating aggregates, 
or electron-conducting "channels", across the bilayer.10'" 
Nonetheless, the actual reaction mechanisms remain obscure due 
to the general unavailability of transverse diffusion rates, possible 
loss of compartmentation of reactants, particularly in photo­
chemical systems,12'13 and the ambiguities inherent in deducing 
reaction mechanisms from rate data, which form the primary 
evidence in most systems studied.1,2 The reactions of dihexa­
decylphosphate (DHP) vesicle-bound methyl viologen (MV2+) 
described in this report are unique in allowing deduction of mo­
lecular details of a transmembrane redox event from the product 
composition and rnicrophase distribution. Specifically, we have 
found that MV2+ bound at the outer vesicle interface mediates 
reduction of inner-localized MV2+ by dithionite ion in bulk solution 
in a manner that requires comigration of MV+ with the electron 
transferred across the membrane barrier. 

(1) Reviews: Hurst, J. K.; Thompson, D. H. P. J. Membrane Sd. 1986, 
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MV2+ and photosensitizers,13 also occurs in pigmented phosphatidylcholine 
vesicles (Kuhn, E., unpublished results). 
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Figure 1. Optical spectra of dithionite-reduced MV2+-DHP vesicles. 
Conditions: 4 mM DHP in 20 mM Tris, pH 8.0, 23 0C; solid line, 9 jiM 
MV2+ outside only; dotted line, 40 MM MV2+ on both surfaces; dot-
dashed line, 20 ^M MV2+ inside, 30 /iM MV2+ outside. All spectra were 
scaled to a total concentration of 50 MM MV+ for comparison purposes. 

Vesicles containing widely varying ratios of externally and 
internally bound MV2+ were prepared14 by sonication of DHP 
in the presence of MV2+ followed by removal of external MV2+ 

by chromatography on cation exchange or dextran gels.13 After 
spectrophotometrically determining the amount of occluded MV2+, 
viologen was readded to the external medium to give the desired 
inside/outside ratio. Passive diffusion of MV2+ across the bilayer 
is very slow;13 these ratios are maintained until vesicle integrity 
is lost by aggregation/fusion processes occurring over a period 
of several days. Dithionite ion does not penetrate the membrane 
and is incapable of directly reducing MV2+ bound at the opposite 
vesicle interface. Thus, no MV+ was formed when S2O4

2" was 
added to vesicle suspensions containing only internal MV2+. 
Viologen reduction did occur in vesicles containing MV2+ bound 
at only the outer or at both interfaces.6 When the amount of 
external MV2+ exceeded the internal MV2+, all of the viologen 
was S204

2"-reducible; when the amount of internal MV2+ exceeded 
the external MV2+, only a fraction of the total MV2+ equal to twice 
the external MV2+ was reducible. Upon oxygenation, MV2+ 

distributions were redetermined by using the chromatograph­
ic/ spectrophotometry methods described above. Because O2 is 
freely membrane-permeable, the MV2+ distribution should closely 
approximate the original MV+ distribution following the reductive 
reaction. It was found that approximately one MV2+ had 
translocated from outside to inside the vesicle per internal MV2+ 

reduced.15 Identical results were obtained when Crn(EDTA) was 
used in place of S2O4

2" as the reductant. 
The forces driving inward migration of MV+ apparently arise 

from membrane polarization; i.e., in the absence of ion movement, 
transmembrane electron transfer is electrogenic. Electroneutrality 
can be restored by diffusion of ions in response to the developing 
potential; in this instance, lipophilic MV+ comigrates with the 
electron. Addition of 50 fiM tetraphenylphosphonium ion as an 
alternate lipophilic cation decreased the percentage of outer MV+ 

migration by about 30-40%. When Fe(CN)6
3", which is not 

membrane-permeable, was used in place of O2 as the oxidant, the 

(14) Hurst, J. K.; Thompson, D. H. P.; Connolly, J. S. / . Am. Chem. Soc. 
1987, 109, 507-515. 

(15) When S2O4
2" was in large excess and the initial external/internal 

MV2+ ratio exceeded unity, the amount of translocated MV+ was greater than 
the initial internal MV2+ concentration. Under these conditions, translocation 
of the additional MV+ was S2O4

2" concentration-dependent, suggesting that 
it arose by additional transmembrane redox cycling during aerobic oxidation 
of the system. 
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Figure 2. Reaction pathway for transmembrane redox. The k2 step, 
represented as viologen dimerization, is complex. 

inside-outside MV2+ product distribution after redox cycling was 
very nearly identical with the initial distribution before reduction. 
This result is expected since transmembrane oxidation of internal 
MV+ would be electrogenic in the opposite sense to internal MV2+ 

reduction in the absence of transverse ion migration. Thus, the 
same forces driving inward diffusion of MV+ during reduction 
drive its outward diffusion when a membrane-impermeable oxidant 
is used. 

Reduction of MV2+ bound only at the external interface of DHP 
vesicles gave predominantly monomeric radical ion product16 

(Figure 1, solid line). The amount of monomer remained greater 
than 85% of the total reduced viologen at [MV2+]/[DHP] ratios 
ranging from 0.0025-0.015 and was still 40% at the very high 
ratio of 0.15. In contrast, when equimolar MV2+ was present at 
the opposing vesicle interfaces or when internal MV2+ was in excess 
(r = 0.01-0.04), the product optical spectrum corresponded 
primarily to the multimeric form of the radical16 (Figure 1, dotted 
line). When external MV2+ was in excess, the amount of multimer 
formed was approximately equal to the initial concentration of 
MV2+ on the inner surface, the remainder being monomeric MV+ 

radical cation (e.g., Figure 1, dot-dashed line). These observations 
indicate that the multimeric form of the radical is formed in a 
stoichiometric ratio of one viologen each from the inner and outer 
vesicle interfaces and that reduction of inner bound MV2+ is 
associated with aggregation.17 

Reduction of DHP vesicles containing internally and externally 
bound MV2+ exhibited biphasic kinetics. Relative amplitudes for 
the two steps measured at various wavelengths indicated that 
monomeric and multimeric MV+ were the principal products of 
the fast and slow reaction steps, respectively. These observations 
establish that aggregation is coincident with transmembrane redox 
under steady-state conditions. With S2O4

2" in excess, the fast step 
was first order and gave a rate constant, kh similar to the constant 
for dithionite reduction of MV2+ in solution.18 The rate for the 
slow step was about 102-fold less than the fast reaction step and 
with equimolar MV2+ initially at both interfaces followed simple 
second-order kinetics with k2 = 1.3 (±0.4) X 104 M-1 s"1 in 20 
mM Tris, pH 8.0, 23 0C, [DHP] = 1-2 mM, and [MV2+]/[DHP] 

(16) Meisel, D.; Mulac, W. A.; Matheson, M. S. J. Phys. Chem. 1981, 85, 
179-187. 

(17) Although the basis for preferential dimerization of MV+ within the 
vesicle is presently unknown, it is not ascribable simply to a concentrating 
effect. The internal surface area of the DHP vesicles is about 1/3 the total 
area;14 because the viologen is extensively membrane-associated, the inner 
localized MV+ would be only twice the surface concentration of outer localized 
MV+ when the inside/outside ratio is equimolar. 

(18) Tsukahara, K.; Wilkins, R. G. J. Am. Chem. Soc. 1985, 107, 
2632-2635. 

= 0.025-0.081; k2 was independent of the monitoring wavelength 
and S2O4

2" concentrations measured over the range [S2O4
2"] = 

0.41-2.2 mM. 
A reaction scheme consistent with these facts is illustrated in 

Figure 2. Here, rapid reduction of externally bound MV2+ (Zc1) 
precedes reduction of internally localized MV2+ (k2), which occurs 
either by rate-limiting formation of a mixed-valent MV2+-MV+ 

dimer or slow electron exchange between external MV+ and 
internal MV2+, followed by rapid dimerization. The MV2+-MV+ 

dimer is subsequently rapidly reduced (k3) to (MV+)2 by externally 
localized S2O4

2". Upon oxygenation, the MV2+ ions derived from 
the dimer are found inside the vesicle, as expected from the system 
electrostatics. Since Jk1, fc3 » k2, the rate law is given by d-
[MV+]T/dt = ki[MV2+]JSO2-] -I- /t2[MV+]0[MV2+]i, where 
subscripts T, o, and i refer to total MV+ in the system and MV2+ 

bound at outer and inner vesicle interfaces, respectively. With 
equimolar inner and outer [MV2+], [MV+]0 =* [MV2+]: for the 
slow step, so that d[MV+]T/dt =* Ar1[MV2+I0[SO2"] + Ar2[MV2+];2. 

Our present efforts are directed at probing mechanistic details 
of the transmembrane redox step and exploring the generality of 
the mechanism. Consistent with our observations, a report has 
recently appeared9 suggesting comparable dynamic behavior for 
7V,7V'-dihexadecyl-4,4'-bipyridinium2+-mediated transmembrane 
electron transfer between S2O4

2" and Fe(CN)6
3" ions separated 

by phosphatidylcholine liposomal membranes. 
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Owing to its fundamental importance, the study of long-range 
magnetic interactions has been an active field of research in recent 
years.2 The terephthalato dianion has been proved to be an 
appropriate bridging unit to design magnetic systems with a 
separation of 11-12 A between the two magnetic centers.3-5 In 
all of these studies the intramolecular magnetic interactions, to 
the disappointment of the research workers, were negligibly small. 
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(2) Magneto-Structural Correlations in Exchange Coupled Systems; 
Willett, R. D., Gatteschi, D., Kahn, 0., Eds.; Reidel: Dordrecht, The 
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